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Abstract-The paper presents the application of the calculus of finite differences to obtain an explicit
expression for the natural frequencies of the finite strip model of a simply supported orthotropic rectangular
plate. This analytical solution not only involves far less computational work than the conventional finite strip
method, but also enables parametric studies for accuracy and convergence of the finite strip approximation.

INTRODUCTION

The finite strip method [1], which is a Kantorovich type formulation of combining the finite
element method and the Fourier series technique, has been used by many investigators for the
free vibration analysis of plates [2-4]. This method requires less computer storage and time,
compared to the finite element method, because of the reduced size of the stiffness and mass
matrices involved in vibration analysis. However, as the number of strips increases the amount of
computer work increases considerably.

For a rectangular plate of uniform thickness, simply supported along all the four edges,
approximated as an assemblage of a number of finite strips of equal width, it is possible to obtain
.an analytical solution using the calculus of finite differences [5, 6]. The comp1.!tational work
involved is independent of the number of strips. Hence the finite ,strip-difference calculus
technique can be used to test the accuracy of the finite strip approximation with increasing
number of strips.§

STRIP STIFFNESS MATRIX

Consider a rectangular plate of uniform thickness and sides I and a simply supported along all
the four edges. It is approximated as an assemblage of N, strips (Fig. la), The lateral deflection of
a typical strip of width d (Fig. lb), defined by sides j and (j + 1) is assumed as

(1)

where the Yq (y) are functions which satisfy the boundary conditions of the strip at y '" 0 and

tPost-Doctoral Fellow.
tProfessor.
§A similar difference calculus approach has been used by Leckie [7] to test a Hrennikoff model approximation of plates.

425

S&S Vol. J\, No. 4-D



426 C. SUNDARARAJAN and D. V. REDDY

STRIP INTERFACE
/

r
/

V

a I 2 3 (N,;-Il N,; (Ns·1)

•
- .t .. - .-----

(a) LAYOUT

J
x

I
w

(b) TYPICAL STRIP

Fig. l. Finite strip assemblage of the plate.

y = a, WJ.q and (Ji,q are the lateral deflection and slope (aWi,q /ax) at the j th strip interface
corresponding to Yq(y). Since the strips are simply supported, the Yq(y) may be taken as

Equation (1) can be written in the matrix form
r

w(x,y) = [N]{K} = L [N]q{ll}q
q~1.2 ...

where

{Jl}q = [Wj,q (Jj,q Wj+l.q (Jj+l,qr

[N] = [[Nlt[Nh . , . [N]r 1

and

The curvature matrix

a2
W

a?
a2 w

- ay2

+2 a
2

w
axay

can be expressed in terms of the displacements as

r

{x}=[c]{K}= L [C]q{ll}qo
q=1,2 ...

(2)

(3)

(4)

(5)

(6)
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Here

and

( 6 12X) (4 6X) ( 6 12X) (6X 2 )- d2 +(j2 Yq - -(j+ d2 Yq - d2 -(j3 Yq - d2 -(j Yq

[Cjq = - (1- 3;22 +2;:) Y; _ (X _2~2 +~:) Y; _ e;22 _2;:) Y; _ G:_~2) Y;

2(-~~ +6;3
2)Y~ 2(1-~+ 3;22) Y~ 2(~~ -6;3

2) Y~ 2e;22 -~) Y~

where
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(7)

(8)

Y' = dYq

q dy'

The bending and twisting moments for an orthotropic plate are given by

( ~:} = [D]{X}
Mxy

where

[

Dx D, 0]
[D] = D, Dy 0

o 0 Dxy

in which D" Dy , Dt, Dxy are the flexural rigidities of the plate.
The strip stiffness matrix is given by

[k] = rr[Cf[D][C] dx dy

which yields

[k]l1 [k]12'" [k]'r
[kb

where

(9)

(10)

(11)

(12)
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For strips simply supported at both ends with Yq taken as in (2), it can be shown that

[k]pq = 0 for p ~q.

[k]qq is given explicitly in Appendix I.

(13)

STRIP MASS MATRIX

The consistent strip mass matrix has been used by earlier investigators for the plate vibration
problems [2-4]. In this paper a concentrated line mass matrix, in which the distributed mass is
assumed to be concentrated as line masses along the strip interfaces, is used because it is simpler
to use in conjunction with the difference calculus technique.

Let /.L be the uniform mass per unit area of the strip. For a typical strip the intensity of the line
mass along its edges is /.L (d /2) per unit length. So the inertial loading at the strip edges j and (j +1)
during free vibration is

and

Equation (14) can be written in terms of [.IV] and {~} as

and

( d 2 --)Qj+l = /.L"2 w [N]{A} X~" .

(14)

(15)

Using the principle of virtual work, as in the finite element method [8], the inertial force vector
is obtained by

{F}= rr[.lVfQ dx dy (16)

where Q is the inertial force distribution. Expressing Q in terms of Qj and Qj+1 and substituting
in (16) gives

(17)

where ~(x,Q) is the Dirac delta function. We can also express the inertial forces in terms of the
frequency, displacement and mass as

(18)
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where [rii] is the strip mass matrix. Comparing (17) and (18)

d fa fd - -
[rii] = 1J-2Jo Jo [Nr[N](a(x,Q) + a(X,g)) dx dy

[m]l1 [m]12 [m]t,
[mb

... [m]"

where

d fa fd
[m ]pq = IJ- 2Jo Jo [N]/[Nq ](a(X,Q) +a(x,g» dx dy

= IJ-~r([1 OOO]T[1 000]+ [00 1Or[OO 1O]YpYq dy

= IJ-~[l 0 0 0] rYpY
q

dy.o 0 0 0 0

o 0 1 0
o 0 0 0

Because of the orthonormal property of the Yq taken in (2)

[m ]pq = 0 for p i' q

and

[

1 0 0 0]d 0 0 0 0
[m lqq = IJ- 2 0 0 1 0

o 000
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(19)

(20)

(21)

(22)

EQUILIBRIUM EQUATIONS FOR THE PLATE

The strip stiffness and mass matrices and the strip displacement vector are assembled to form
the plate stiffness and mass matrices, [K]pq and [M]pq, and the plate displacement vector {a}q.
The boundary conditions in the x -direction are incorporated in the above matrices by deleting the
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rows and columns corresponding to the zero displacements. The resulting stiffness and mass
matrices and displacement vector are [K]pq, [M]pq and {ilL respectively.

Because of (13) and (21), we have

and [K]pq =: 0 for p1'- q}
[M]pq =: 0 for p 1'- q .

(23)

So the equilibrium equation can be written mode by mode (i.e. for each integer value of q
separately). The equilibrium equation for the qth mode is

(24)

The matrices [K]qq and [M]qq are of the order

No =: [2(Ns + 1) - boundary conditions incorporated in the x-direction].

THE FINITE STRIP METHOD

For the nontrivial solution of (24)

(26)

This is a typical eigenvalue problem. The square of the frequencies of vibration, w2
, are obtained

as the eigenvalues of the matrix

As the number of strips Ns increases the order of the above matrix, No, increases twice as fast
and hence the computation involved also increases considerably.

FINITE STRIP-DIFFERENCE CALCULUS TECHNIQUE

Because of the repetitive pattern of the strip assemblage, it is possible to use the finite
difference calculus [5,6] in conjunction with the finite strip formulation for the frequency analysis
of rectangular plates.

The equation of motion of the qth mode, before the incorporation of the boundary conditions
in the x-direction (these will be incorporated later) is

This can be expanded as

(27)t

f

S\'i s\~ s\~
sW s~~ sW
sW s~~ sW+ sW
S

O) SO) S(l)+S(2)
41 42 43 21

o 0 s~~)

S
(I)
14

S
(l)
24

S~~+ sW
S~~+ S~~

S
(2)
32

o
o

(2)
SI3

(2)
S23

S~~+ sW

o
o
s\~

s~2]

S~~+ sW

tFor the sake of simplicity, the suffix q will be dropped henceforth.
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o S
(2)
41 S

(2)
42

(28)

where sW = k\F- w
2 m\fl; i = 1,2,3,4; j = 1,2,3,4 and 1= 1,2 ... N. in which the superfix (1)

denotes the number of the strip and k\fl, m\fl are the elements of the strip stiffness and mass
matrices [k ]qq and [m ]qq respectively.

Since all the strips have identical elastic and geometric properties, the mass and stiffness
matrices are the same for all the strips, i.e.

m~F = mij )
klf) = kij

s\F = Sij for 1= 1,2, ... Ns .

(29)

Substituting (29) in (28) we find, on expanding the matrix equation into a system of simultaneous
algebraic equations, that any pair of equations except the first and the last are similar. A typical pair
of equations is

Because of the physical meaning of the stiffness coefficients, we have

and

kit = k33 ,
k 12 = k21 = -k34 = -k43,
k 13 = k3 I,

k l4 = k41 = -k23 = -k32 ,

k22 = k44

k24 = k42 •

(31)t

The coefficients given in Appendix 1 verify equations (31).
Substituting (22) and (31) in (30a) and (30b) we get,

(32a)

(32b)

tFor example, k ll means the force required at the jth side ofthe strip to cause unit deflection (w) at the jth
side. This is same as k", the force required at the (j + l)th side of the strip to cause unit deflection at the
(j + l)th side.
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Introducing the Boolean difference operator E, defined by

and

equation (32) can be written as

~W; = W;+I}
E Wi = Wjl ,

(33)

SUbstituting (34b) in (34a), we get

{ lk (E -I) k d 2 lk~iE - E-
1
)2] }

13 + E . +2 II - fL W ] + lk
2
iE +E 1) +2k

n
] Wj = 00

Wj may be assumed as

Wj = 2: AntPn(j)
11 =1,2 ...

(34a)

(34b)

(35)

(36)

where tPn (j) satisfies the displacement boundary conditions at x = 0 and x = 1 (i.e. j = 0 and
j = Ns). Since the plate is simply supported at x = 0 and x = I, a sinusoidal form of tPn (j) may be
assumed; i.e.

A. (.) 0 n71"j
'l-'n J = Sin N, 0

Substituting (36) and (37) in (35) and using the relations

E{exp [i~~j]} = exp [~~ (j + 1) ]

and

E-
I
{exp [i~:j]} = exp [~~ (j - I) ]

in which i = V-I, we get

Imago n~2 . An { { k13 [exp (~~) + exp (;'71")]+ 2k ll - fLdw2}

+ {k~.[exP(R)-exp(~)r}
{k24 [ exp (~~) + exp (-~71")]+ 2k22 }

(37)

(38)

(39)
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where Imag. denotes the imaginary part. Simplifying (39), we get

"" {[ n1T 2] [2ki4Sin2n1TINS)}. n1Tj
LJ An 2k13cos N +2kll -/Ldw -[k IN k) sm-N =0.

n~I.2... s 24 COS n1T s + 22 s

So,

[
n1T 2] [2k~4 sin2n1T INs ]

2k 13 COS N +2k'l - /LdW - [k IN k] = 0 for n = 1,2 ... 00.
s 24 COS n1T s + 22
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(40)

(41)

From (41) the frequency Wqn corresponding to the qth sine mode along the strip (Y-direction) and
the nth sine mode across the strip (X-direction) is given by

2 -[2ki4sin2n1TINs ]

/Ldw qn = [k IN + k )+2k 13 cos n1TINs +2k ll
24 cos n1T s 22

(42)

where the k;j correspond the qth sine mode along the strip.
By changing the value of q and n the various frequencies can be computed. It is interesting to

note that the computational work involved in calculating the above expression is independent of
the number of strips, Ns, whereas it increases with Ns in the conventional finite strip method.
Hence the present method is ideal to study the accuracy and convergence of finite strip
approximation.

If the plate has boundary conditions other than simply supports at x =0 and x = I, then <pn (j)
can not be assumed as a sine function. When other appropriate functions are chosen, the resulting
equations will not decouple in n as in equation (41). But a set of coupled linear algebraic equations
will result and they have to be solved numerically. Hence a simple analytical expression for the
frequencies, similar to (42), can not be obtained.

NUMERICAL RESULTS AND DISCUSSION

The natural frequencies of a rectangular simply supported plate of IIa = 2, and Dx == 1, D, = 1,
Dx , == 0·35 and D 1 == 0·3 are calculated by the conventional finite strip method [equation (26)] and
the present method [equation (42)). For different values of Ns, the approximate execution time
required by an IBM 370-175 digital computer to calculate the (Ns -1) frequencies are given in
Table 1. (In all cases q is taken equal to 1). It shows that as the number of strips, Ns, increases the
execution time increases considerably for the conventional method, whereas the increase is very
little for the present method.

Table I. Execution time. (in 1/10,000 of a second)

N, Conventional method Present method

5 798 432
10 1863 665
20 10549 865
30 35310 865

Squares of frequencies obtained from both the methods, along with the exact valuest, are
plotted in Fig. 2. The present method gives a lower bound in all the cases and converges towards

tFor a simply supported plate, the exact solution is obtained by assuming

"" "" B . n7TX • q1Ty
w(x,y)= nf2,... qf22. nq sm-I-sm a ·
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Fig. 2. Comparison of results.

the exact value as N s increases. The conventional method gives lower values in the beginning
increases above the exact value and then decreases towards the exact value. Moreover, in all
cases the conventional method gives a higher value than the present method.

The conventional method is a computer-oriented eigenvalue analysis of equations (27), while
the present method takes advantage of the repetitive pattern of the equations and uses the Calculus
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of Finite Differences to obtain analytical expressions for the eigenvalues. The differences in the
results, as seen in Fig. 2 may be mainly due to the fact that the eigenvalues obtained by the
conventional method are approximate due to errors in the numerical analysis of eigenvalues of a
matrix, whereas the eigenvalues calculated from equation (42) are exact for the approximate
strip-assembled plate model.

CONCLUSIONS

The finite strip-difference calculus technique proves to be a powerful tool to study the
accuracy and convergence of the finite strip approximation. Whereas the conventional matrix
technique gives approximate results, the present method gives an exact solution for the
approximate structures, namely the strip-assemblage. Computational work is also considerably
reduced in the present method.

The difference calculus technique for a plate vibration problem described in this paper, can be
easily extended to static and stability problems of plates and shells.
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APPENDIX 1

symmetrical

where c = (;;).


